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» Zis an ideal on w;
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» T is a P-ideal if for each (A,) from Z, there is A € Z such
that A, C* A for every n.
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Let ¢ be a LSC submeasure (taking finite values on finite
sets). Define

Fin(p) = {A Cw: ¢(A) < oo}
Exh(¢) = {ACw: lim,p(A\ n) = 0}.

Both Fin(y) and Exh(y) are analytic P-ideals.

Theorem (Solecki) For every analytic P-ideal there is an
LSC submeasure ¢ such that

7T = Exh(yp).
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Let F be a family of finite subsets of w (covering w). Assume that
F is hereditary, i.e. F € F whenever F C G for some G € F.
Let

A=(1,1/2,1/2,1/4,--- ,1/4,1/8,--- | 1/8,--).

4 times 8 times
Define
er(A) = sup{z An: FeF}
neF
and

Ir = Exh(pF).
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vr(A) = sup{z An: FeF}
neF
F - { singletons }  Zr =P(w),
F =[w]s¥  Zr =the summable ideal,
F={[2",2"1): ncwlt Iy =the density ideal,
F ={ antichains } = Zz =tr(N),
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pr(A) =sup{Y_An: F € F}
neF

F - { singletons }  Zr =P(w),
F =[w]s¥  Zr =the summable ideal,
F={[2",2"1): ncwlt Iy =the density ideal,
F ={ antichains } = Zz =tr(N),
F={F cw]<“:|Fn[2",2"Y)| <2"/n}¥  Ir-Farah’
ideal.
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Assume F is compact (as a subset of 2*) and x € [0,00)*. If Tr 4
is non-trivial, then it is not F,.

F is scattered,

F is homeomorphic to « + 1 for some limit «,
we may represent Zr , in C(a+ 1),

and then the proof starts.
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Let p be a measure on w such that p({n}) — 0 and p(w) = oc.
Assume F is hereditary, covers w and is such that for each
A € [W]<¥ there is F € F such that F C A and

u(F) > u(A)/2.

Then there is N € [w]“ such that [N]<¥ C F.

Assume F is as above, but there is no homogenuous N.
JF is compact.
Zr, is F,. Contradiction.
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Let X be a Banach space and let (x,) be a bounded weakly null
sequence in X. Then for each € > 0 there is a finite convex
combination y = . ajx; such that |ly|| < e.

Let X be a Banach space, (x,) be a bounded weakly null sequence
in X, and let |1 be a measure on w such that p(w) = oo and
wu({n}) — 0. Then for each € > 0 there is a finite G C w and a
convex combination y =Y, a;ix; where aj = pu({i})/1(G), such
that ||y| < e.



Application: Schreier ideals

Let S = {F € [w]*¥: |F| < min F 4+ 1}.



Application: Schreier ideals

Let S = {F € [w]*¥: |F| < min F 4+ 1}.

Theorem
Is = the density ideal



Let S = {F € [w]<“: |F| < min F + 1}.

Is = the density ideal
One can define recursively Schreier families of higher order: S,,
a<wi, e.g.

SZZ{UFJ'ZFo<"'<Fn€8>”§minF0+1}
Jj<n



Let S = {F € [w]*¥: |F| < min F 4+ 1}.

Is = the density ideal
One can define recursively Schreier families of higher order: S,,
a<wi, e.g.

SzZ{UFjiF0<"'<Fn68>n§min,:0+1}
Jj<n

For each v < wq

I$a+1 = EXh(SOSa-H) g Fin(gpsa+1) g EXh(SOSa) = IS@'
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For each v < wq

Is.11 C Fin(ps, 1) € Zs, -

a+1

We call Zs,'s Schreier ideals. Are they pairwise different?
Corollary:

Since S, is compact for each « and
Fin(y) is always an F, ideal,

for each o we have Zs, , C Zs,.



Thanks.
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