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How to generate ideals from families of finite sets

Let F be a family of finite subsets of ω (covering ω). Assume that
F is hereditary, i.e. F ∈ F whenever F ⊆ G for some G ∈ F .

Let x ∈ [0,∞)ω.
Define

ϕF ,x(A) = sup{
∑
n∈F

xn : F ∈ F}

and
IF ,x = Exh(ϕF ,x).
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Theorem
Let µ be a measure on ω such that µ({n})→ 0 and µ(ω) =∞.
Assume F is hereditary, covers ω and is such that for each
A ∈ [ω]<ω there is F ∈ F such that F ⊆ A and

µ(F ) > µ(A)/2.

Then there is N ∈ [ω]ω such that [N]<ω ⊆ F .

Proof.
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Theorem (Mazur’s Lemma)

Let X be a Banach space and let (xn) be a bounded weakly null
sequence in X . Then for each ε > 0 there is a finite convex
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i αixi such that ‖y‖ < ε.
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Let S = {F ∈ [ω]<ω : |F | ≤ minF + 1}.

Theorem
IS = the density ideal

One can define recursively Schreier families of higher order: Sα,
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S2 = {
⋃
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