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f : R→ R

S. Kempisty, Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184–197.

Definition (S. Kempisty, 1932)

A function f is quasi-continuous at a point x if for every neigh-
bourhood U of x and for every neighbourhood V of f (x) there exists
a non-empty open set G ⊂ U such that f (G ) ⊂ V .

A function f is quasi-continuous if it is quasi-continuous at each
point.

Q - the family of all quasi-continuous functions
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H. P. Thielman, Types of functions, Amer. Math. Monthly 60 (1953), 156–161.

Definition (H. P. Thielman, 1953)

A function f is cliquish at a point x if for every neighbourhood U
of x and for each ε > 0 there exists a non-empty open set G ⊂ U
such that | f (y)− f (z) |< ε for each y , z ∈ G .

A function f is cliquish if it is cliquish at each point.

Cq - the family of all cliquish functions
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A ⊂ R

A set A has the Baire property if A = G∆P, where G is open
and P is of the first category.

A function f has the Baire property if f −1(V ) has the Baire
property for each open set V .

Ba - the family of functions having the Baire property
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Q ⊂ Cq

f is cliquish ⇐⇒ f is pointwise discontinuous function

f is cliquish ⇐⇒ C (f ) is residual

J. C. Oxtoby, Measure and category, Springer-Verlag, New York, 1971.

Theorem (Oxtoby)

A function f has the Baire property iff there exists a set P of the
first category such that f |R\P is continuous.

Q ⊂ Cq ⊂ Ba
D - the family of all Darboux functions

DQ ⊂ DCq ⊂ DBa
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T. Mańk, T. Świa̧tkowski, On some class of functions with Darboux’s characteristic, Zeszyty Nauk. Politech.  Lódz.

Mat. 11 (301) (1977), 5–10.

Definition (T. Mańk, T. Świa̧tkowski, 1977)

A function f has the Świa̧tkowski property if for each interval
(a, b) ⊂ R there exists a point x ∈ (a, b) such that f is continuous
at x and f (x) is situated between f (a) and f (b).

S - the family of functions having the Świa̧tkowski property

S ⊂ Cq ⊂ Ba

Gertruda Ivanova About porosity in the space of cliquish functions
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Let f , g ∈ Ba.
Put

ρ(f , g) = min {1, sup {| f (t)− g(t) |: t ∈ R}} .
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Let (X , ρ) - metric space.

Fix M ⊂ X , x ∈ X and r > 0. Let

γ (x , r ,M) = sup{t ≥ 0 : ∃z∈XB (z , t) ⊂ B (x , r) \M}.

Put

p (M, x) = 2 lim sup
r→0+

γ (x , r ,M)

r
.

L. Zajiček, On σ-porous sets in abstract spaces, Abstr. Appl. Anal. 5 (2005), 509–534.

Definition (L. Zajiček)

A set M ⊂ X is porous (strongly porous) if
p (M, x) > 0 (p (M, x) = 1) for each x ∈ M.
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L. Zajiček, On σ-porous sets in abstract spaces, Abstr. Appl. Anal. 5 (2005), 509–534.

Definition (L. Zajiček)
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p (M, x) = 2 lim sup
r→0+

γ (x , r ,M)

r

Let
p (M) = inf{p (M, x) : x ∈ M}.

G.I., E. Wagner-Bojakowska, Porous subsets in the space of functions having the Baire property, Math. Slovaca 67

(6) (2017), 1333-1344.

Fix q > 0.

Definition

A set M ⊂ X is at least q-porous if p (M) ≥ q.

Definition

A set M ⊂ X is q-porous if p (M) = q.
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M. Filipczak, G.I., J. Wódka
M. Filipczak, G. Ivanova, J. Wódka, Comparison of some families of real functions in porosity terms, Math.

Slovaca 67 (5) (2017), 1155-1164.

DQ ⊂sp D

DQ ⊂sp QS ⊂sp S

DQ ⊂sp QS ⊂? Q

Theorem

The family QS is at least 1/2-porous in (Q, ρ).

Theorem

The family QS is not 3/4-porous in (Q, ρ).
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M. Filipczak, G.I., J. Wódka

QS is porous in (Q, ρ)
QS is not strongly porous in (Q, ρ)

Open question:

Does there exist q ∈ [1/2, 3/4) such that QS is exactly q-
porous in (Q, ρ)?
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Q ⊂sp Cq ⊂sp Ba
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The set S is at least 2/3-porous in (Cq, ρ).
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Lemma

Let f ∈ Cq and ε > 0. Then there exist sequences of disjoint
intervals {(an, bn)}n∈N and {

(
ynk , y

n
k+1

)
}k∈Z, n ∈ N, such that:

(i) for each n ∈ N

(an, bn) =
⋃
k∈Z

[
ynk , y

n
k+1

]
;

(ii) osc
(
f ,
[
ynk , y

n
k+1

])
< ε for each n ∈ N, k ∈ Z;

(iii) for each n ∈ N we have lim
n→∞

ynk = bn and lim
n→−∞

ynk =
an;

(iv) the set R \
⋃

n∈N (an, bn) is contained in D (f ) and
nowhere dense.

Gertruda Ivanova About porosity in the space of cliquish functions



Suppose that I and J are intervals.

Definition

A function f is a (I , J)-left side surjective if for all t ∈ I we have
f ((inf I , t)) = J. Analogously, we say that f is a (I , J)-right side
surjective function if for all t ∈ I we have f ((t, sup I )) = J. A
function f is a (I , J)-bi-surjective function if it is both left and right
side surjective.

Theorem

For each q ∈ (2/3, 1) the set S not q-porous in (Cq, ρ).

Theorem

The set S is 2/3-porous in (Cq, ρ).

S ⊂2/3−p Cq ⊂sp DBa
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M. Filipczak, G.I., J. Wódka

Open question:

Does there exist q ∈ [1/2, 3/4) such that QS is exactly q-
porous in (Q, ρ)?

G.I., A. Karasińska
G.I., A. Karasińska, About porosity of some Świa̧tkowski functions in the space of quasi-continuous functions,

submited

Theorem

The set QS is 2/3-porous in (Q, ρ).
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