About porosity in the space of cliquish functions

Gertruda Ivanova

Institute of Mathematics Academia Pomeraniensis Słupsk, Poland

1931, **S. Banach** - the set of nowhere diferentiable functions is residual in the space of continuous functions under the supremum metric.

1931, **S. Banach** - the set of nowhere diferentiable functions is residual in the space of continuous functions under the supremum metric.

Darboux-like functions in relation to dynamical systems:

- **1** M. Čiklová, Dynamical systems generated by functions with connected G_{δ} graphs, Real Anal. Exchange **30** (2004/2005), 617-638.
- ② K. L. Kellum, Iterates of almost continuous functions and Sharkovskii's theorem, Real Anal. Exchange 14 (1988/1989), 420–422.
- 3 H. Pawlak, R. Pawlak, Dynamics of Darboux functions, Tatra Mt. Math. Publ. 42 (2009), 51–60.
- ④ H. Pawlak, R. Pawlak, Transitivity, dense orbits and some topologies finer than the natural topology of the unit interval, Tatra Mt. Math. Publ. 35 (2007), 1–12.
- S R. Pawlak, On Sharkovsky's property of Darboux functions, Tatra Mt. Math. Publ. 42 (2009), 95–105.
- R. Pawlak, On the entropy of Darboux functions, Colloq. Math. 116 (2) (2009), 227–241.

Porosity in spaces of Darboux-like functions:

- J. Kucner, R. Pawlak, B. Świątek, On small subsets of the space of Darboux functions, Real Anal. Exchange 25 (1) (1999), 343–358.
- 2 H. Rosen, Porosity in spaces of Darboux-like functions, Real Anal. Exchange 26 (1) (2000), 195–200.

Porosity in spaces of Darboux-like functions:

- J. Kucner, R. Pawlak, B. Świątek, On small subsets of the space of Darboux functions, Real Anal. Exchange 25 (1) (1999), 343–358.
- 2 H. Rosen, Porosity in spaces of Darboux-like functions, Real Anal. Exchange 26 (1) (2000), 195–200.

Porosity in spaces of functions:

- M. Filipczak, G.I., J. Wódka, Comparison of some families of real functions in porosity terms, Math. Slovaca, 67 (5) (2017), 1155– 1164.
- ② G.I., A. Karasińska, E. Wagner-Bojakowska, Some remarks on quasicontinuous functions, Tatra Mt. Math. Publ. 65 (2016), 151–159.
- 3 G.I., E. Wagner-Bojakowska, On some modification of Darboux property, Math. Slovaca 66 (1) (2016), 79–88.
- ④ G.I., E. Wagner-Bojakowska, On some subclasses of the family of Darboux Baire 1 functions, Opuscula Math. 34 (4) (2014), 777–788.
- G.I., E. Wagner-Bojakowska, On some subfamilies of Darboux quasicontinuous functions, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 64 (3) (2014), 31–43.

S. Kempisty, Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184-197.

Definition (S. Kempisty, 1932)

A function f is **quasi-continuous at a point** x if for every neighbourhood U of x and for every neighbourhood V of f(x) there exists a non-empty open set $G \subset U$ such that $f(G) \subset V$.

S. Kempisty, Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184-197.

Definition (S. Kempisty, 1932)

A function f is **quasi-continuous at a point** x if for every neighbourhood U of x and for every neighbourhood V of f(x) there exists a non-empty open set $G \subset U$ such that $f(G) \subset V$.

A function f is **quasi-continuous** if it is quasi-continuous at each point.

S. Kempisty, Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184-197.

Definition (S. Kempisty, 1932)

A function f is **quasi-continuous at a point** x if for every neighbourhood U of x and for every neighbourhood V of f(x) there exists a non-empty open set $G \subset U$ such that $f(G) \subset V$.

A function f is **quasi-continuous** if it is quasi-continuous at each point.

 $\ensuremath{\mathcal{Q}}$ - the family of all quasi-continuous functions

H. P. Thielman, Types of functions, Amer. Math. Monthly 60 (1953), 156-161.

Definition (H. P. Thielman, 1953)

A function f is **cliquish at a point** x if for every neighbourhood U of x and for each $\epsilon > 0$ there exists a non-empty open set $G \subset U$ such that $|f(y) - f(z)| < \epsilon$ for each $y, z \in G$.

H. P. Thielman, Types of functions, Amer. Math. Monthly 60 (1953), 156-161.

Definition (H. P. Thielman, 1953)

A function f is **cliquish at a point** x if for every neighbourhood U of x and for each $\epsilon > 0$ there exists a non-empty open set $G \subset U$ such that $|f(y) - f(z)| < \epsilon$ for each $y, z \in G$.

A function f is **cliquish** if it is cliquish at each point.

H. P. Thielman, Types of functions, Amer. Math. Monthly 60 (1953), 156-161.

Definition (H. P. Thielman, 1953)

A function f is **cliquish at a point** x if for every neighbourhood U of x and for each $\epsilon > 0$ there exists a non-empty open set $G \subset U$ such that $|f(y) - f(z)| < \epsilon$ for each $y, z \in G$.

A function f is **cliquish** if it is cliquish at each point.

 \mathcal{C}_q - the family of all cliquish functions

A set A has **the Baire property** if $A = G\Delta P$, where G is open and P is of the first category.

A set A has **the Baire property** if $A = G\Delta P$, where G is open and P is of the first category.

A function f has **the Baire property** if $f^{-1}(V)$ has the Baire property for each open set V.

A set A has **the Baire property** if $A = G\Delta P$, where G is open and P is of the first category.

A function f has **the Baire property** if $f^{-1}(V)$ has the Baire property for each open set V.

 $\ensuremath{\mathcal{B}}\xspace$ - the family of functions having the Baire property

 $\mathcal{Q} \subset \mathcal{C}_{\textbf{q}}$

f is cliquish $\iff f$ is pointwise discontinuous function

- f is cliquish $\iff f$ is pointwise discontinuous function
- f is cliquish $\iff C(f)$ is residual

f is cliquish \iff f is pointwise discontinuous function

f is cliquish $\iff C(f)$ is residual

J. C. Oxtoby, Measure and category, Springer-Verlag, New York, 1971.

Theorem (Oxtoby)

A function f has the Baire property iff there exists a set P of the first category such that $f \mid_{\mathbb{R}\setminus P}$ is continuous.

f is cliquish \iff f is pointwise discontinuous function

f is cliquish $\iff C(f)$ is residual

J. C. Oxtoby, Measure and category, Springer-Verlag, New York, 1971.

Theorem (Oxtoby)

A function f has the Baire property iff there exists a set P of the first category such that $f \mid_{\mathbb{R}\setminus P}$ is continuous.

$$\mathcal{Q} \subset \mathcal{C}_{oldsymbol{q}} \subset \mathcal{B}$$
a

f is cliquish \iff f is pointwise discontinuous function

f is cliquish $\iff C(f)$ is residual

J. C. Oxtoby, Measure and category, Springer-Verlag, New York, 1971.

Theorem (Oxtoby)

A function f has the Baire property iff there exists a set P of the first category such that $f|_{\mathbb{R}\setminus P}$ is continuous.

$$\mathcal{Q} \subset \mathcal{C}_{oldsymbol{q}} \subset \mathcal{B}$$
a

 $\ensuremath{\mathcal{D}}$ - the family of all Darboux functions

f is cliquish \iff f is pointwise discontinuous function

f is cliquish $\iff C(f)$ is residual

J. C. Oxtoby, Measure and category, Springer-Verlag, New York, 1971.

Theorem (Oxtoby)

A function f has the Baire property iff there exists a set P of the first category such that $f|_{\mathbb{R}\setminus P}$ is continuous.

$$\mathcal{Q} \subset \mathcal{C}_{oldsymbol{q}} \subset \mathcal{B}$$
a

 $\ensuremath{\mathcal{D}}$ - the family of all Darboux functions

$$\mathcal{DQ} \subset \mathcal{DC}_q \subset \mathcal{DB}$$
a

T. Mańk, T. Świątkowski, On some class of functions with Darboux's characteristic, Zeszyty Nauk. Politech. Łódz.
Mat. 11 (301) (1977), 5–10.

Definition (T. Mańk, T. Świątkowski, 1977)

A function f has the **Świątkowski property** if for each interval $(a, b) \subset \mathbb{R}$ there exists a point $x \in (a, b)$ such that f is continuous at x and f(x) is situated between f(a) and f(b).

T. Mańk, T. Świątkowski, On some class of functions with Darboux's characteristic, Zeszyty Nauk. Politech. Łódz. Mat. 11 (301) (1977), 5–10.

Definition (T. Mańk, T. Świątkowski, 1977)

A function f has the **Świątkowski property** if for each interval $(a, b) \subset \mathbb{R}$ there exists a point $x \in (a, b)$ such that f is continuous at x and f(x) is situated between f(a) and f(b).

 ${\mathcal S}$ - the family of functions having the Świątkowski property

T. Mańk, T. Świątkowski, On some class of functions with Darboux's characteristic, Zeszyty Nauk. Politech. Łódz. Mat. 11 (301) (1977), 5–10.

Definition (T. Mańk, T. Świątkowski, 1977)

A function f has the **Świątkowski property** if for each interval $(a, b) \subset \mathbb{R}$ there exists a point $x \in (a, b)$ such that f is continuous at x and f(x) is situated between f(a) and f(b).

 ${\mathcal S}$ - the family of functions having the Świątkowski property

$$\mathcal{S} \subset \mathcal{C}_{q} \subset \mathcal{B}$$
a

Let $f, g \in \mathcal{B}a$. Put $ho(f, g) = min \{1, sup \{ | f(t) - g(t) | : t \in \mathbb{R} \} \}.$

Let (X, ρ) - metric space.

Let (X, ρ) - metric space. Fix $M \subset X$, $x \in X$ and r > 0.

Let (X, ρ) - metric space. Fix $M \subset X$, $x \in X$ and r > 0. Let $\gamma(x, r, M) = \sup\{t \ge 0 : \exists_{z \in X} B(z, t) \subset B(x, r) \setminus M\}.$ Let (X, ρ) - metric space. Fix $M \subset X$, $x \in X$ and r > 0. Let $\gamma(x, r, M) = \sup\{t \ge 0 : \exists_{z \in X} B(z, t) \subset B(x, r) \setminus M\}.$

Put

$$p(M, x) = 2 \limsup_{r \to 0^+} \frac{\gamma(x, r, M)}{r}.$$

Let (X, ρ) - metric space. Fix $M \subset X$, $x \in X$ and r > 0. Let $\gamma(x, r, M) = \sup\{t \ge 0 : \exists_{z \in X} B(z, t) \subset B(x, r) \setminus M\}.$

Put

$$p(M, x) = 2 \limsup_{r \to 0^+} \frac{\gamma(x, r, M)}{r}.$$

L. Zajiček, On σ-porous sets in abstract spaces, Abstr. Appl. Anal. 5 (2005), 509-534.

Definition (L. Zajiček) A set $M \subset X$ is **porous (strongly porous)** if p(M, x) > 0 (p(M, x) = 1) for each $x \in M$.

$$p(M, x) = 2 \limsup_{r \to 0^+} \frac{\gamma(x, r, M)}{r}$$

$$p(M, x) = 2 \limsup_{r \to 0^+} \frac{\gamma(x, r, M)}{r}$$

Let

$$p(M) = \inf \{ p(M, x) : x \in M \}.$$

$$p(M, x) = 2 \limsup_{r \to 0^+} \frac{\gamma(x, r, M)}{r}$$

Let

$$p(M) = \inf \{ p(M, x) : x \in M \}.$$

G.I., E. Wagner-Bojakowska, Porous subsets in the space of functions having the Baire property, Math. Slovaca 67 (6) (2017), 1333-1344. Fix q > 0.

Definition

A set $M \subset X$ is at least *q*-porous if $p(M) \ge q$.

$$p(M, x) = 2 \limsup_{r \to 0^+} \frac{\gamma(x, r, M)}{r}$$

Let

$$p(M) = \inf\{p(M, x) : x \in M\}.$$

G.I., E. Wagner-Bojakowska, Porous subsets in the space of functions having the Baire property, Math. Slovaca 67 (6) (2017), 1333-1344. Fix q > 0.

Definition

A set $M \subset X$ is at least q-porous if $p(M) \ge q$.

Definition A set $M \subset X$ is *q*-**porous** if p(M) = q.

M. Filipczak, G. Ivanova, J. Wódka, Comparison of some families of real functions in porosity terms, Math. Slovaca 67 (5) (2017), 1155-1164.

M. Filipczak, G. Ivanova, J. Wódka, Comparison of some families of real functions in porosity terms, Math. Slovaca 67 (5) (2017), 1155-1164.

$$\mathcal{DQ} \subset^{sp} \mathcal{D}$$

M. Filipczak, G. Ivanova, J. Wódka, Comparison of some families of real functions in porosity terms, Math. Slovaca 67 (5) (2017), 1155-1164.

$$\mathcal{DQ} \subset^{sp} \mathcal{D}$$

$$\mathcal{DQ}\subset^{sp}\mathcal{QS}\subset^{sp}\mathcal{S}$$

M. Filipczak, G. Ivanova, J. Wódka, Comparison of some families of real functions in porosity terms, Math. Slovaca 67 (5) (2017), 1155-1164.

$$\mathcal{DQ} \subset^{sp} \mathcal{D}$$

 $\mathcal{DQ}\subset^{\mathsf{sp}}\mathcal{QS}\subset^{\mathsf{sp}}\mathcal{S}$

 $\mathcal{DQ}\subset^{sp}\mathcal{QS}\subset^{?}\mathcal{Q}$

M. Filipczak, G. Ivanova, J. Wódka, Comparison of some families of real functions in porosity terms, Math. Slovaca 67 (5) (2017), 1155-1164.

$$\mathcal{DQ}\subset^{sp}\mathcal{D}$$

$$\mathcal{DQ} \subset^{sp} \mathcal{QS} \subset^{sp} \mathcal{S}$$

$$\mathcal{DQ}\subset^{sp}\mathcal{QS}\subset^{?}\mathcal{Q}$$

Theorem

The family QS is at least 1/2-porous in (Q, ρ) .

M. Filipczak, G. Ivanova, J. Wódka, Comparison of some families of real functions in porosity terms, Math. Slovaca 67 (5) (2017), 1155-1164.

$$\mathcal{DQ}\subset^{sp}\mathcal{D}$$

 $\mathcal{DQ}\subset^{\mathsf{sp}}\mathcal{QS}\subset^{\mathsf{sp}}\mathcal{S}$

 $\mathcal{DQ}\subset^{sp}\mathcal{QS}\subset^{?}\mathcal{Q}$

Theorem

The family QS is at least 1/2-porous in (Q, ρ) .

Theorem

The family QS is not 3/4-porous in (Q, ρ) .

 $\begin{array}{c} \mathcal{QS} \ \underline{\text{is}} \ \text{porous in} \ (\mathcal{Q}, \rho) \\ \mathcal{QS} \ \underline{\text{is not}} \ \text{strongly porous in} \ (\mathcal{Q}, \rho) \end{array}$

 $\mathcal{QS} \text{ } \underline{\text{is porous in }} (\mathcal{Q}, \rho) \\ \mathcal{QS} \text{ } \underline{\text{is not strongly porous in }} (\mathcal{Q}, \rho)$

Open question:

Does there exist $q \in [1/2, 3/4)$ such that \mathcal{QS} is exactly q-porous in (\mathcal{Q}, ρ) ?

G.I., E. Wagner-Bojakowska, Porous subsets in the space of functions having the Baire property, Math. Slovaca 67

(6) (2017), 1333-1344.

$$\mathcal{Q} \subset^{sp} \mathcal{C}_q \subset^{sp} \mathcal{B}$$
a

$$\mathcal{Q}\subset^{sp}\mathcal{C}_q\subset^{sp}\mathcal{B}$$
a

$$\mathcal{DQ}\subset^{sp}\mathcal{DC}_{q}\subset^{sp}\mathcal{DB}$$
a

$$\mathcal{Q}\subset^{sp}\mathcal{C}_q\subset^{sp}\mathcal{B}$$
a

$$\mathcal{DQ}\subset^{sp}\mathcal{DC}_q\subset^{sp}\mathcal{DB}$$
a

$$\mathcal{DS}\subset^{sp}\mathcal{DC}_q\subset^{sp}\mathcal{DB}$$
a

$$\mathcal{Q}\subset^{sp}\mathcal{C}_q\subset^{sp}\mathcal{B}$$
a

$$\mathcal{DQ}\subset^{sp}\mathcal{DC}_q\subset^{sp}\mathcal{DB}$$
a

$$\mathcal{DS}\subset^{sp}\mathcal{DC}_q\subset^{sp}\mathcal{DB}$$
a

$$\mathcal{S}\subset \mathcal{C}_q\subset \mathcal{DB}$$
a

G.I., E. Wagner-Bojakowska, Porous subsets in the space of functions having the Baire property, Math. Slovaca 67 (6) (2017), 1333-1344.

$$\mathcal{Q} \subset^{sp} \mathcal{C}_q \subset^{sp} \mathcal{B}$$
a

$$\mathcal{DQ}\subset^{sp}\mathcal{DC}_q\subset^{sp}\mathcal{DB}$$
a

$$\mathcal{DS}\subset^{sp}\mathcal{DC}_q\subset^{sp}\mathcal{DB}$$
a

$$\mathcal{S}\subset \mathcal{C}_q\subset \mathcal{DB}$$
a

Theorem

The set S is at least 2/3-porous in (C_q, ρ) .

Gertruda Ivanova

About porosity in the space of cliquish functions

Lemma

Let $f \in Cq$ and $\varepsilon > 0$. Then there exist sequences of disjoint intervals $\{(a_n, b_n)\}_{n \in \mathbb{N}}$ and $\{(y_k^n, y_{k+1}^n)\}_{k \in \mathbb{Z}}$, $n \in \mathbb{N}$, such that: (i) for each $n \in \mathbb{N}$

$$(a_n, b_n) = \bigcup_{k \in \mathbb{Z}} [y_k^n, y_{k+1}^n];$$

- (ii) osc $(f, [y_k^n, y_{k+1}^n]) < \epsilon$ for each $n \in \mathbb{N}$, $k \in \mathbb{Z}$; (iii) for each $n \in \mathbb{N}$ we have $\lim_{n \to \infty} y_k^n = b_n$ and $\lim_{n \to -\infty} y_k^n = a_n$;
- (iv) the set $\mathbb{R} \setminus \bigcup_{n \in \mathbb{N}} (a_n, b_n)$ is contained in D(f) and nowhere dense.

Definition

A function f is a (I, J)-left side surjective if for all $t \in I$ we have $f((\inf I, t)) = J$. Analogously, we say that f is a (I, J)-right side surjective function if for all $t \in I$ we have $f((t, \sup I)) = J$. A function f is a (I, J)-bi-surjective function if it is both left and right side surjective.

Definition

A function f is a (I, J)-left side surjective if for all $t \in I$ we have $f((\inf I, t)) = J$. Analogously, we say that f is a (I, J)-right side surjective function if for all $t \in I$ we have $f((t, \sup I)) = J$. A function f is a (I, J)-bi-surjective function if it is both left and right side surjective.

Theorem

For each $q \in (2/3, 1)$ the set S not q-porous in (C_q, ρ) .

Definition

A function f is a (I, J)-left side surjective if for all $t \in I$ we have $f((\inf I, t)) = J$. Analogously, we say that f is a (I, J)-right side surjective function if for all $t \in I$ we have $f((t, \sup I)) = J$. A function f is a (I, J)-bi-surjective function if it is both left and right side surjective.

Theorem

For each $q \in (2/3, 1)$ the set S not q-porous in (C_q, ρ) .

Theorem The set S is 2/3-porous in (C_q, ρ) .

Definition

A function f is a (I, J)-left side surjective if for all $t \in I$ we have $f((\inf I, t)) = J$. Analogously, we say that f is a (I, J)-right side surjective function if for all $t \in I$ we have $f((t, \sup I)) = J$. A function f is a (I, J)-bi-surjective function if it is both left and right side surjective.

Theorem

For each $q \in (2/3, 1)$ the set S not q-porous in (C_q, ρ) .

Theorem

The set S is 2/3-porous in (C_q, ρ) .

$$\mathcal{S}\subset^{2/3-p}\mathcal{C}_q\subset^{sp}\mathcal{DB}$$
a

Open question:

Does there exist $q \in [1/2, 3/4)$ such that \mathcal{QS} is exactly q-porous in (\mathcal{Q}, ρ) ?

Open question:

Does there exist $q \in [1/2, 3/4)$ such that \mathcal{QS} is exactly q-porous in (\mathcal{Q}, ρ) ?

G.I., A. Karasińska

G.I., A. Karasińska, About porosity of some Świątkowski functions in the space of quasi-continuous functions, submited

Theorem

The set QS is 2/3-porous in (Q, ρ) .