Mycielski among trees - category case

Marcin Michalski, Robert Rałowski, Szymon Żeberski

Wrocław University of Science and Technology

5th Real Analysis Workshop 15-16.06.2019, Konopnica

Theorem (Mycielski)

For every comeager (conull) set $X \subseteq [0,1]^2$ there is a perfect set $P \subseteq [0,1]$ satisfying $P \times P \subseteq X$.

Theorem (Mycielski)

For every comeager (conull) set $X \subseteq [0,1]^2$ there is a perfect set $P \subseteq [0,1]$ satisfying $P \times P \subseteq X$.

In ω^{ω} and 2^{ω} :

Perfect sets = bodies of perfect trees

What about other types of trees?

Theorem (Mycielski)

For every comeager (conull) set $X \subseteq [0,1]^2$ there is a perfect set $P \subseteq [0,1]$ satisfying $P \times P \subseteq X$.

In ω^{ω} and 2^{ω} :

What about other types of trees? Goal: For a comeager set

 $G \subseteq \omega^{\omega} \times \omega^{\omega}$ find trees $T_1 \subseteq T_2$ of some type satisfying $[T_1] \times [T_2] \subseteq G$, where

$$[T] = \{x \in \omega^{\omega} : (\forall n \in \omega)(x \upharpoonright n \in T)\}$$

< /i>
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓

Denote
$$\omega^{<\omega} = \bigcup_{n \in \omega} \omega^n$$
.

Definition

Let $T \subseteq \omega^{<\omega}$ be tree. Then

- $\operatorname{succ}_T(\sigma) = \{n \in \omega : \sigma^{\frown} a \in T\}$ for each $\sigma \in T$;
- split(T) = { $\sigma \in T$: $|\operatorname{succ}_T(\sigma)| \ge 2$ };
- ω -split $(T) = \{ \sigma \in T : |\operatorname{succ}_T(\sigma)| = \omega \}.$
- stem $(T) \in T$ is the shortest splitting node of T.

▲ 伊 ▶ ▲ 王 ▶

Definition

We call a tree $T \subseteq \omega^{<\omega}$ a

- Sacks (or perfect) tree if for each σ ∈ T there is τ ∈ T such that σ ⊆ τ and τ ∈ split(T);
- Miller (or superperfect) tree if for each σ ∈ T there is τ ∈ T such that σ ⊆ τ and τ ∈ ω-split(T);
- Laver tree if for each $\sigma \in T$ satisfying stem $(T) \subseteq \sigma$ we have $\sigma \in \omega$ -split(T).

Definition

We call a perfect tree $T \subseteq \omega^{<\omega}$ a

• uniformly perfect tree if

$$(orall n \in \omega)(T \cap \omega^n \subseteq \operatorname{split}(T) \lor T \cap \omega^n \cap \operatorname{split}(T) = \emptyset).$$

• Silver tree if

$$(\forall \sigma, \tau \in T)(|\sigma| = |\tau| \Rightarrow (\forall n \in \omega)(\sigma^{\frown} n \in T \Leftrightarrow \tau^{\frown} n \in T).$$

э

Image: A image: A

Laver trees are too big

Proposition

There exists a G_{δ} set $G \subseteq \omega^{\omega}$ such that $[T] \not\subseteq G$ for every Laver tree $T \subseteq \omega^{<\omega}$.

くロ と く 同 と く ヨ と 一

э

Laver trees are too big

Proposition

There exists a G_{δ} set $G \subseteq \omega^{\omega}$ such that $[T] \not\subseteq G$ for every Laver tree $T \subseteq \omega^{<\omega}$.

Proof.

• Set
$$G = \{x \in \omega^{\omega} : (\exists^{\infty} n \in \omega)(x(n) = 0)\}$$
. It is dense G_{δ} .

・ロト ・ 一 ・ ・ ヨ ・ ・ ・ ・ ・

Laver trees are too big

Proposition

There exists a G_{δ} set $G \subseteq \omega^{\omega}$ such that $[T] \not\subseteq G$ for every Laver tree $T \subseteq \omega^{<\omega}$.

Proof.

• Set
$$G = \{x \in \omega^{\omega} : (\exists^{\infty} n \in \omega)(x(n) = 0)\}$$
. It is dense G_{δ} .

• If T is a Laver tree then

$$T' = \{x \in T : x(n) \neq 0 \text{ for } n \ge |\text{stem}(T)|\}$$

is a Laver subtree of T and $T' \cap G = \emptyset$. \Box

< ロ > < 同 > < 回 > < 回 >

Laver trees are too big

Corollary

There exists a $G_{\delta} \subseteq \omega^{\omega} \times \omega^{\omega}$ such that $[T] \times \{y\} \not\subseteq G$ for every laver tree $T \subseteq \omega^{<\omega}$ and $y \in \omega^{\omega}$.

イロト イポト イヨト イヨト

э

Miller trees are half-good

If not Laver then Miller maybe?

Miller trees are half-good

If not Laver then Miller maybe?

Theorem

For every comeager set $G \subseteq \omega^{\omega} \times \omega^{\omega}$ there exist a uniformly perfect tree $T_1 \subseteq \omega^{<\omega}$ and a Miller tree $T_2 \subseteq \omega^{<\omega}$ such that $[T_1] \times [T_2] \subseteq G \cup \Delta$.

Miller trees are half-good

Lemma 1

For every open dense set $U \subseteq \omega^{\omega} \times \omega^{\omega}$ and two open sets $V_1, V_2 \subseteq \omega^{\omega}$ there are sequences $\sigma_1, \sigma_2 \in \omega^{<\omega}$ satisfying $[\sigma_1] \subseteq V_1, [\sigma_2] \subseteq V_2, |\sigma_1| = |\sigma_2|$ such that $[\sigma_1] \times [\sigma_2] \subseteq U$ and $[\sigma_2] \times [\sigma_1] \subseteq U$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Miller trees are half-good

Lemma 1

For every open dense set $U \subseteq \omega^{\omega} \times \omega^{\omega}$ and two open sets $V_1, V_2 \subseteq \omega^{\omega}$ there are sequences $\sigma_1, \sigma_2 \in \omega^{<\omega}$ satisfying $[\sigma_1] \subseteq V_1, [\sigma_2] \subseteq V_2, |\sigma_1| = |\sigma_2|$ such that $[\sigma_1] \times [\sigma_2] \subseteq U$ and $[\sigma_2] \times [\sigma_1] \subseteq U$.

Lemma 2

For every open dense set $U \subseteq \omega^{\omega} \times \omega^{\omega}$, a finite sequence of open sets $(V_k : 0 \leq k < n)$ in ω^{ω} there is a sequence of sequences $(\sigma_k : 0 \leq k < n)$ such that:

$$|\sigma_k| = |\sigma_l| \text{ for all } 0 \leq k, l < n,$$

● $[\sigma_I] \times [\sigma_k] \subseteq U$ for all distinct $0 \leq k, l < n$.

Miller trees are half-good

Theorem

For every comeager set $G \subseteq \omega^{\omega} \times \omega^{\omega}$ there exist a uniformly perfect tree $T_1 \subseteq \omega^{<\omega}$ and a Miller tree $T_2 \subseteq \omega^{<\omega}$ such that $[T_1] \times [T_2] \subseteq G \cup \Delta$.

▲ 伊 ▶ ▲ 王 ▶

Miller trees are half-good

Theorem

For every comeager set $G \subseteq \omega^{\omega} \times \omega^{\omega}$ there exist a uniformly perfect tree $T_1 \subseteq \omega^{<\omega}$ and a Miller tree $T_2 \subseteq \omega^{<\omega}$ such that $[T_1] \times [T_2] \subseteq G \cup \Delta$.

Idea of proof.

Construct a nice Miller tree using Lemma 2.

▲ 同 ▶ ▲ 三 ▶

Theorem

There is an open dense set U such that $[T_1] \times [T_2] \not\subseteq U \cup \Delta$ for any Miller trees $T_1, T_2 \subseteq \omega^{<\omega}$.

▲ 同 ▶ → 三 ▶

Theorem

There is an open dense set U such that $[T_1] \times [T_2] \not\subseteq U \cup \Delta$ for any Miller trees $T_1, T_2 \subseteq \omega^{<\omega}$.

Idea of proof.

• Let $Q = \{(q_1, q_2) \subseteq \mathbb{Q}^2 : \operatorname{supp}(q_1) = \operatorname{supp}(q_2)\}$, where $\operatorname{supp}(q) = \max\{n \in \omega : q(n) \neq 0\} + 1$.

▲ 同 ▶ → 三 ▶

Theorem

There is an open dense set U such that $[T_1] \times [T_2] \not\subseteq U \cup \Delta$ for any Miller trees $T_1, T_2 \subseteq \omega^{<\omega}$.

Idea of proof.

- Let $Q = \{(q_1, q_2) \subseteq \mathbb{Q}^2 : \operatorname{supp}(q_1) = \operatorname{supp}(q_2)\}$, where $\operatorname{supp}(q) = \max\{n \in \omega : q(n) \neq 0\} + 1$.
- Set

 $U = \bigcup_{q \in Q} [q_1 \upharpoonright (\operatorname{supp}(q_1) + K(q))] \times [q_2 \upharpoonright (\operatorname{supp}(q_2) + K(q))],$ where $K(q) = \max\{q_1(n), q_2(n) : n \in \omega\}, q = (q_1, q_2)$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem

There is an open dense set U such that $[T_1] \times [T_2] \not\subseteq U \cup \Delta$ for any Miller trees $T_1, T_2 \subseteq \omega^{<\omega}$.

Idea of proof.

- Let $Q = \{(q_1, q_2) \subseteq \mathbb{Q}^2 : \operatorname{supp}(q_1) = \operatorname{supp}(q_2)\}$, where $\operatorname{supp}(q) = \max\{n \in \omega : q(n) \neq 0\} + 1$.
- Set

 $U = \bigcup_{q \in Q} [q_1 \upharpoonright (\operatorname{supp}(q_1) + K(q))] \times [q_2 \upharpoonright (\operatorname{supp}(q_2) + K(q))],$ where $K(q) = \max\{q_1(n), q_2(n) : n \in \omega\}, q = (q_1, q_2)$

• Choose $(x,y) \in [T_1] \times [T_2]$ such that $(x,y) \notin U \cup \Delta$

Proposition

There exists a comeager set $G \subseteq \omega^{\omega}$ such that $[T] \not\subseteq G$ for any uniformly perfect Miller tree $T \subseteq \omega^{<\omega}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Silver trees are too weird

Lemma

Every Silver tree contains a Silver subtree that splits and rests.

・ 同 ト ・ ヨ ト ・ ヨ ト

Silver trees are too weird

Lemma

Every Silver tree contains a Silver subtree that splits and rests.

Proposition

There exists an open dense set U such that $[T] \times [T] \not\subseteq U \cup \Delta$ for any Silver tree $T \subseteq \omega^{<\omega}$.

Silver trees are too weird

Lemma

Every Silver tree contains a Silver subtree that splits and rests.

Proposition

There exists an open dense set U such that $[T] \times [T] \not\subseteq U \cup \Delta$ for any Silver tree $T \subseteq \omega^{<\omega}$.

Proof.

•
$$U = \bigcup_{q \in Q} [q_1 \upharpoonright (\operatorname{supp}(q_1) \frown 0 \frown 0)] \times [q_2 \upharpoonright (\operatorname{supp}(q_2) \frown 1 \frown 1)]$$

< ロ > < 同 > < 三 > < 三

Silver trees are too weird

Lemma

Every Silver tree contains a Silver subtree that splits and rests.

Proposition

There exists an open dense set U such that $[T] \times [T] \not\subseteq U \cup \Delta$ for any Silver tree $T \subseteq \omega^{<\omega}$.

Proof.

•
$$U = \bigcup_{q \in Q} [q_1 \upharpoonright (\operatorname{supp}(q_1) \frown 0 \frown 0)] \times [q_2 \upharpoonright (\operatorname{supp}(q_2) \frown 1 \frown 1)]$$

• Wlog: *T* splits and rests.

< ロ > < 同 > < 三 > < 三 >

Silver trees are too weird

Lemma

Every Silver tree contains a Silver subtree that splits and rests.

Proposition

There exists an open dense set U such that $[T] \times [T] \not\subseteq U \cup \Delta$ for any Silver tree $T \subseteq \omega^{<\omega}$.

Proof.

•
$$U = \bigcup_{q \in Q} [q_1 \upharpoonright (\operatorname{supp}(q_1) \frown 0 \frown 0)] \times [q_2 \upharpoonright (\operatorname{supp}(q_2) \frown 1 \frown 1)]$$

Wlog: T splits and rests. □

< ロ > < 同 > < 三 > < 三 >

Thank you for your attention!

M. Michalski, R. Rałowski, Sz. Żeberski, Mycielski among trees, arXiv:1905.09069.