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basics of the Hutchinson—Barnsley theory

Assume that X is a metric space.
(*) By K(X) we denote the family of all nomepty and compact subsets of X.
(*) A finite family of continuous selfmaps of X will be called an iterated
function system (IFS).
(*) f F={f,...,fr} is an IFS, then we define F : K£(X) — K(X) by
Fk) =00
i=1
Theorem(Hutchinson, Barnsley, 1980s’)

If X is complete and F is an IFS on X consisting of Banach (or weak)
contractions, then there exists the unique Ax € KC(X) such that

Ar = F(Ar) = fi(Ar).

Moreover, for every K € KC(X), the sequence of iterates F¥)(K) converges to
Azx w.r.t. the Hausdorff metric.
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(*) A fuzzy set u on X will be any function u: X — [0,1].

(*) If u, v are any fuzzy sets on X, then its union u U v is defined by

uUv(x) = max{u(x), v(x)}, xe€X.

(*) A fuzzy set u on X will be called a crisp set, if u = xa for some nonempty
ACX.

(*Yy ff: X —=Yand u: X — [0,1] is a fuzzy set, then we define the fuzzy
set f(u) on Y by

F(u)(y) = sup{u(x) : x € F ()},

where we additionally assume that sup@® = 0.

Remark
If AC X and f: X — Y, then f(xa) = Xf(a)-
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fuzzyfication of C(X)

Let X be a metric space and v : X — [0, 1].
(*) If & €[0,1], then its a-cut is defined by

[u]" = {x € X:u(x) > a} if a>0
= cd({x € X:u(x) >0}) if a=0

*) u is called upper semicontiunous (usc) if each set [u]® is closed.
( PP

(*) u is compactly supported, if the set supp(u) := [u]° is compact.

(*) normal, if u(x) =1 for some x € X.
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fuzzyfication of C(X)

Assume that X is a metric space. Put
Ke(X) :={u:X —[0,1] : u is usc, compactly supported and normal}.
For u,v € Ke(X), define

doo (u, v) := sup h([u]®, [vI*),

where h is the Hausdorff metric.

Fact
(1) dso is @ metric on Kp(X).

(2) If X us complete [compact], then ICr(X) is complete [compact].
(3) A € K(X) iff xa € Ke(X).

(4) For A, B € K(X), doo(xa,x8) = h(A, B).
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(*) A family R = {p1, ..., pn} of selfmaps of [0, 1] is called an admissible

system of grey level maps, if
- pj is nondereasing, usc and p;(0) =0 for every j =1,...,n;
- pj(1) =1 forsome j=1,...,n.
(*) A fuzzy IFS is a pair (F,R) that consists of an IFS F and an admissible

system of grey level maps R.
(*) Each fuzzy IFS (F,R) generates the F : Kr(X) — Ke(X) defined by
F(u) = pi(f(u)) = max{p;(fi(u)) :j =1,..., n}
j=1
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(*) Each fuzzy IFS (F,R) generates the F : Kr(X) — Ke(X) defined by

F(u) = pi(f(u)) = max{p;(fi(u)) :j =1,..., n}

Remark
(1) For every x € X,

F(u)(x) = max{pi(u(y)) : j = 1,0, y € £77(x)}
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fuzzy version of the Hutchinson—Barnsley theorem

Theorem (Cabrelli et.al 1992, Oliveira and S., 2016)

Assume that X is a complete metric space and (F,R) is a fuzzy IFS consisting
of Banach (or weak) contractions. Then there exists the unique ur € Kr(X)
(called the fuzzy attractor) such that F(ur) = ur.

Moreover, for every uy € Kr(X), the sequence of iterates F(¥)(ug) converges to
ur w.r.t. the metric duo.

Remark
If ur is a fuzzy attractor, then for every « € [0, 1],

n

[ur]® = (lpi(ur)])

j=1

Theorem (Oliveira and S., 2016)
In the above frame, set | = {i : pj(1) =1}, and let 7' = {f; : i € I}. Then
[U]:]o = A]: and [U}']l = A}-/.
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If X is a metric space and m € N, then we endow the Cartesian product X"
with the maximum metric d,,.

Definiton

(*) A finite family G of continuous maps from X™ to X will be called a
generalized iterated function system (GIFS) of order m.

(*) Each GIFS G = {g1, ..., gn} generates the map G : K(X)™ — K(X) by
setting

G(Kr, o Km) = | gi(Ki x .. x Kin).
j=1

(*) Amap g: X™ — X is called a generalized Banach contraction of order m,
if Lip(g) < 1.

(*) Amap g: X™ — X is called a generalized weak contraction of order m, if
.. it satisfies weaker contractive condition.
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generalized IFSs

Theorem (Mihail, Miculescu, S., Swaczyna 2010’s)
If X is a complete metric space and G = {gi1, ..., 8.} is a GIFS on X of order m

comprising of generalized weak contractions, then there exists the unique
Ag € K(X) such that

Ag = g(Ag, ...,Ag) - UgJ(AG X ... X Ag)
Jj=1

Moreover, for every Ki, ..., Km € K(X), the sequence (Ki) defined by
Kk+m = g(Kk, (X33} Kk+m71)7

converges to Ag.

Filip Strobin .



Generalized IFSs and their fuzzyfication

GIFS fuzzyfication

(*) For fuzzy set uy, ..., um : X — [0, 1], define uy X ... X um : X™ — [0,1] by

(1 X coee X Um) (X1, ooy Xm) = min{wi(x;) : i =1,...,m}.

Filip Strobin .



Generalized IFSs and their fuzzyfication

GIFS fuzzyfication

(*) For fuzzy set uy, ..., um : X — [0, 1], define uy X ... X um : X™ — [0,1] by

(1 X coee X Um) (X1, ooy Xm) = min{wi(x;) : i =1,...,m}.

(*) A pair (G, R) will be called a fuzzy GIFS of order m, if G is a GIFS of
order m and R is an admissible system of grey level maps.

Filip Strobin .



Generalized IFSs and their fuzzyfication

GIFS fuzzyfication

(*) For fuzzy set uy, ..., um : X — [0, 1], define uy X ... X um : X™ — [0,1] by
(1 X coee X Um) (X1, ooy Xm) = min{wi(x;) : i =1,...,m}.
(*) A pair (G, R) will be called a fuzzy GIFS of order m, if G is a GIFS of
order m and R is an admissible system of grey level maps.

(*) Each fuzzy GIFS (G, R) generates the map G : Ke(X)™ — KCr(X) by

G(u1, -y tm) = ] pi(gi(tnx .. x um)) = max{p;(gi(tnx...xum)) 1 j = 1,..., n}

=t

Filip Strobin .



Generalized IFSs and their fuzzyfication

GIFS fuzzyfication

(*) For fuzzy set uy, ..., um : X — [0, 1], define uy X ... X um : X™ — [0,1] by

(1 X coee X Um) (X1, ooy Xm) = min{wi(x;) : i =1,...,m}.

(*) A pair (G, R) will be called a fuzzy GIFS of order m, if G is a GIFS of
order m and R is an admissible system of grey level maps.
(*) Each fuzzy GIFS (G, R) generates the map G : Ke(X)™ — KCr(X) by

G(u1, -y tm) = ] pi(gi(tnx .. x um)) = max{p;(gi(tnx...xum)) 1 j = 1,..., n}

Remark
(1) For every x € X,

G(uiy ooy um)(x) = max{pj((t1 X ... X um)(y)) :j=1,..,n, y € ﬁfl(x)})}

Filip Strobin .



Generalized IFSs and their fuzzyfication

GIFS fuzzyfication

(*) For fuzzy set uy, ..., um : X — [0, 1], define uy X ... X um : X™ — [0,1] by

(1 X coee X Um) (X1, ooy Xm) = min{wi(x;) : i =1,...,m}.

(*) A pair (G, R) will be called a fuzzy GIFS of order m, if G is a GIFS of
order m and R is an admissible system of grey level maps.
(*) Each fuzzy GIFS (G, R) generates the map G : Ke(X)™ — KCr(X) by

G(u1, -y tm) = ] pi(gi(tnx .. x um)) = max{p;(gi(tnx...xum)) 1 j = 1,..., n}

=t

Remark
(1) For every x € X,
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fuzzy version of the Hutchinson—Barnsley theorem for GIFSs

Theorem (Oliveira and S., 2016)

Assume that X is a complete metric space and (G, R) is a fuzzy GIFS
consisting of generalized weak contractions. Then there exists the unique

ug € Kr(X) (called the fuzzy attractor) such that G(ug, ..., ug) = ug.
Moreover, for every ui, ..., um € Kr(X), the sequence of iterates (uk) defined by
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converges to ug w.r.t. the metric ds.
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Assume that X is a complete metric space and (G, R) is a fuzzy GIFS
consisting of generalized weak contractions. Then there exists the unique

ug € Kr(X) (called the fuzzy attractor) such that G(ug, ..., ug) = ug.
Moreover, for every ui, ..., um € Kr(X), the sequence of iterates (uk) defined by
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converges to ug w.r.t. the metric ds.

Remark
If ug is a fuzzy attractor, then for every « € [0, 1],
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Theorem (Oliveira and S., 2016)
In the above frame, set | = {i: pj(1) =1}, and let G' = {gi : i € I}. Then
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